
Markov Layout

Flavio Chierichetti
Department of Computer Science

Cornell University
Ithaca, NY 14853, USA

flavio@cs.cornell.edu

Ravi Kumar
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089, USA

ravikumar@yahoo-inc.com

Prabhakar Raghavan
Yahoo! Labs
701 First Ave

Sunnyvale, CA 94089, USA
pragh@yahoo-inc.com

Abstract— Consider the problem of laying out a set of n images
that match a query onto the nodes of a

√
n×
√
n grid. We are given

a score for each image, as well as the distribution of patterns by
which a user’s eye scans the nodes of the grid and we wish to
maximize the expected total score of images selected by the user.
This is a special case of the Markov layout problem, in which
we are given a Markov chain M together with a set of objects
to be placed at the states of the Markov chain. Each object has
a utility to the user if viewed, as well as a stopping probability
with which the user ceases to look further at objects. This layout
problem is prototypical in a number of applications in web search
and advertising, particularly in an emerging genre of search results
pages from major engines. In a different class of applications, the
states of the Markov chain are web pages at a publishers website
and the objects are advertisements.

We study the approximability of the Markov layout problem. Our
main result is an O(logn) approximation algorithm for the most
general version of the problem. The core idea is to transform an
optimization problem over partial permutations into an optimization
problem over sets by losing a logarithmic factor in approximation;
the latter problem is then shown to be submodular with two
matroid constraints, which admits a constant-factor approximation.
In contrast, we also show the problem is APX-hard via a reduction
from CUBIC MAX-BISECTION.

We then study harder variants of greater practical interest of the
problem in which no gaps — states of M with no object placed
on them — are allowed. By exploiting the geometry, we obtain an
O(log3/2 n) approximation algorithm when the digraph underlying
M is a grid and an O(logn) approximation algorithm when it
is a tree. These special cases are especially appropriate for our
applications.

1. INTRODUCTION

Given a Markov chain M and a set U of objects, we
seek an optimal assignment of objects to the states of the
Markov chain. Consider a user walking through M viewing
the objects at visited states. Associated with each object
u ∈ U is a probability pu that the user exits the walk
upon viewing u, together with a value νu that represents the
user’s utility on viewing u. Depending on the application,
the Markov chain represents either the passage of a user’s
eyes over objects on a web page, or the transit of a user
through pages on the Web. Our goal is to optimally place
(some of) the objects on the states of M , with a maximum of

Work done in part while visiting Yahoo! Research. Supported in part by
NSF grant CCF-0910940 and by a grant from Yahoo! Research.

one object per state. This problem arises in the algorithmic
layout of Web pages and Web sites; we describe a series of
(increasingly intricate) cases arising in practice:

(1) In classical web search, the objects are web pages;
the search engine scores these for a query and places 10
top-scoring pages into the 10 slots on the search results
page. The total benefit to the user of these 10 results is
measured by the rank-biased precision [15], which is a
geometrically weighted sum of the scores of the top 10
results. This measure can be viewed as the expected total
score of pages seen by a user transiting through a Markov
chain with 10 states, where at each step the user chooses to
read a page (thereby obtaining utility) or not, and chooses
to exit or not. If the probabilities of exiting are independent
of the slot/object, the trivial strategy is to place the ten
top-scoring documents in the 10 slots, in decreasing order
of scores. More generally, these probabilities are object-
dependent, making the problem harder (more on this below).

(2) In image search, the objects are images. The image
search engine scores these for a query and must place top-
scoring images into the slots in a rectangular matrix that
is presented to the user. The standard algorithm sorts the
images in decreasing order of score, and places them in
row-major order in the matrix. However, eye-tracking studies
show that users do not scan an image results page in row-
major order — rather, their eyes tend to traverse the page
in a cross-like trajectory, with some randomness [16]. We
may view such user eye-tracks as a Markov chain with a
state for each matrix position (thus the graph underlying M
is a grid graph). In fact, such “non-linear” eye traversals are
common even in page layouts other than the rectangular
matrix [8], [2], [5]. Thus our formulation with Markov
chains in two dimensions models settings such as Google’s
Universal search, Microsoft’s Bing, and Yahoo’s slotted
direct displays, as well as many product and fare searches —
in all cases, results pages have a two-dimensional placement
of objects that are not only linear lists of links, but include
photos, maps, fares etc. juxtaposed in two dimensions.

(3) A website consists of a set of web pages, with hyper-
links amongst them; a content publisher such as Yahoo! or
CNN is a good model to keep in mind. The content on these
pages induces a user to walk through the links following a

Markov chain. The objects are advertisements, each of which
has a payoff to the publisher (because the user views or
clicks on the advertisement, with an associated payoff). The
objective is to place the advertisements so as to maximize
the publisher’s total payoff. In this setting, the Markov chain
does not have to be planar or have any simple structure.

1.1. Our contributions

Model. Let M be a Markov chain on a state space S of
size n, where Mi,j is the transition probability from state
i to state j. Each state in S represents a “slot” that can be
filled with an object (e.g., an image, an advertisement, a
URL). The Markov chain also has two distinguished states
s (source) and t (sink) that represent the beginning and the
end states. No object is assigned to t and Mt,t = 1.

Let U be a universe of objects. Associated with each
object u ∈ U is a pair 〈pu, νu〉, where pu ∈ [0, 1] is the
stopping probability, i.e., the probability that the user stops
after looking at object u and νu is the utility accrued if the
user looks at object u.1

Let π : S → U ∪ {⊥} be a mapping from states to
objects, where ⊥ means no object is placed in the state;
by convention, π(t) = ⊥. Let ν⊥ = p⊥ = 0. Given such a
mapping, the stochastic process works as follows. The user
starts from the source s of the Markov chain M and performs
a random walk according to M . If the user is currently in
state i, a utility of νπ(i) is accrued. The user then flips a coin
and with probability pπ(i) walks to t and with probability
1 − pπ(i) walks according to Mi,?. Notice that the walk
effectively ends and the total utility is frozen whenever the
user reaches the sink t.

Definition 1 (Markov layout problem). Given a Markov
chain M and a universe U of objects, the Markov layout
problem (MLP) is to find an assignment π from the states
S of M to U ∪ {⊥} such that the expected total utility is
maximized and no object is assigned to more than one state.

We focus on the following cases of the MLP, depending
on the structure of the input and the requirements on the
output. These cases are directly motivated by our primary
application domains; from a theoretical standpoint they also
provide an understanding of the boundary cases of the
hardness of the problem. We outline these cases through
restrictions on the input structure, as well as on the output.

(1) Input structure: We consider settings where the graph
structure of the underlying Markov chain can be exploited.
The graph can be arbitrary or can be a DAG, a directed
acyclic planar grid, tree, etc. Note that grid-like graphs are
of particular interest for planar object layout on a web page;
for example, this captures the layout of image search results

1We assume that all the probabilities are rationals, represented as a ratio
of two O(logn)-bit numbers. Also, in practice, we will have |U | � n;
our approximation factors will be in terms of n.

or the layout of products on shopping webpages. We also
address the special case where the stopping probability is
the same for all the objects.

(2) Output requirements: In certain settings, we demand
that the assignment π leaves no state (except t) unfilled, i.e.,
π : S \ {t} → U ; this is the gap-free MLP. This induces
subtle but important differences both in our algorithms (as
will be evident) and in practice. Leaving a gap in the
assignment is equivalent to not distracting the user with an
unnecessary advertisement or object, in pursuit of greater
utility elsewhere in the layout; this phenomenon is in fact
understood by content publishers and portals.

Main results. Our main result (Section 3) is that the MLP
can be approximated to within a factor O(log n). The core
idea is to transform an optimization problem over partial
permutations into an optimization problem over sets by
losing a logarithmic factor in approximation; in the course
of this, we define a linear version of the MLP. We then show
how to approximate this linear version by expressing it as a
submodular function with two matroid constraints. As far as
we know, this is the first time that an optimization problem
over partial permutations, whose objective function is an
unbounded-degree polynomial, is solved through a reduction
to submodular maximization over sets. On the other hand,
we show that the MLP is APX-hard via a reduction from
MAX-BISECTION.

In contrast, the gap-free MLP turns out to be much
harder. Even if the underlying graph is a DAG with a
single self-loop, each object has unit utility, and the stopping
probabilities are binary, we show that the gap-free MLP is
inapproximable to within Ω(2n

1−ε
); we also show this to be

near-optimal. This result can be found in Section 5.
We then focus on important cases when the digraph under-

lying M has a special structure. We obtain an O(log3/2 n)-
approximation algorithm for the harder gap-free MLP on
grids (Section 4) and an O(log n)-approximation for the
gap-free MLP on directed trees (Section 6); these algorithms
work by carefully exploiting the geometry of the setting. We
also obtain a quasi-PTAS for directed trees, generalizing the
work of [13]. These special cases are appropriate for the
applications that motivated this work.

A summary of the main results is shown in Table I.

Remarks. First, in our model, the utility accumulates as
the states are revisited, whereas it is sometimes desirable
to discount revisits to a state (in the extreme case, only the
first visit to a state would be considered). Without becoming
non-Markovian, we can model such a discounting loosely by
reducing every transition probability by some factor.

Second, it is tempting to question the need for having both
utility and stopping probability for an object. However, they
are two different facets of an object: e.g., in web search, if
the query is information-seeking, search results with high
utility do not necessarily have high stopping probability.

Third, one might consider the seemingly more general
model where an object u is associated with a non-negative
quintuple 〈qu,1, qu,2, qu,3, qu,4, gu〉 with qu,1 + qu,2 + qu,3 +
qu,4 = 1, where gu is the utility if the user clicks on
the object. A user looks at u and clicks and stops with
probability qu,1, does not click but stops with probability
qu,2, does not click and moves to the next state with
probability qu,3, and clicks and moves to the next state with
probability qu,4. By letting νu = gu · (qu,1 + qu,4) and
pu = qu,1 + qu,2, it is easy to see that the expected total
utility in this setting is the same as the original setting.

1.2. Related work

Aggarwal et al. [1] as well as Kempe and Mahdian [13]
study special cases of the linear cascade model of Example
(1) (see Section 1), in the context of sponsored search
advertisements. For the special case when M consists of
a line with all transition probabilities being equal, they give
an exact solution to our problem. The authors of [13] also
consider a more general model where the Markov chain’s
probabilities are themselves sampled from a distribution be-
fore the user navigates its slots — the aim is to optimize the
ad placement given the distribution. For the general setting
of Example (1), they give a 4-approximation algorithm, as
well as a quasi-PTAS. Giotis and Karlin [10], Deng and Yu
[7], and Gomes, Immorlica, and Markakis [11] study the
equilibria of ad slot auctions using the model of Example 1.
Craswell et al. [6] give some empirical evidence (from click
logs) in support of the linear model; thus our extension for
image search in two dimensions has a natural basis in their
work. Charikar et al. [4] consider a seemingly related but
in fact different problem: they have multiple Markov chains
representing the behavior of two or more classes of users,
each with its own Markov chain on a common set of states.
They focus on inferring the user’s class from a prefix of
the user’s trajectory; this information is used to place class-
specific advertisements on the states. In [5] we report on
the empirical study of several simple heuristics for the web
image search problem, demonstrating tangible improvements
in practice over the simple row-major ordering used hitherto
in image search engines.

Table I
SUMMARY OF RESULTS.

MLP Approximation Hardness
General O(logn) APX-hard

(Theorem 17) (Theorem 21)
Gap-free 2O(b) 2n

1−ε

(b = n1+ε) (Theorem 4) (Theorem 22)
Gap-free on O(log3/2 n)

acyclic grids (Theorem 20)
Gap-free on O(logn)

directed trees (Theorem 23)

2. WARM-UP: EASY CASES

We begin with simple observations about the problem on
general Markov chains.

Theorem 2. The MLP and the gap-free MLP are in P if the
optimum has infinite expected utility.

Next, we address another important special case: when
all the objects have the same stopping probability and we
require that the solution be gap-free.

Theorem 3. The gap-free MLP is in P if the stopping
probability is the same for each object.

Utilizing the characterization in Theorem 2, we obtain

Theorem 4. The gap-free MLP can be approximated to
within factor 2O(b), if b is the number of bits in the input
instance.

Later, in Section 5, we show that the above approximation
is essentially tight. Finally, we observe a trivial approxima-
tion for DAGs. The depth of the DAG is the length of the
longest path from the source s.

Proposition 5. The MLP and the gap-free MLP on DAGs
can be approximated to within a factor d, where d is the
depth of the DAG.

3. AN O(log n)-APPROXIMATION ALGORITHM

In this section we present an O(log n)-approximation
algorithm for the MLP. The idea behind the algorithm and
the analysis is to reduce the objective function, which is an
unbounded degree polynomial to be optimized over a set
of partial permutations, to a more manageable submodular
function over sets.

Here is an overview of the algorithm. To go from per-
mutations to sets, we first do a series of simplifying trans-
formations that only lose constant factors in approximations
(Section 3.1). The next step is to create logarithmically many
buckets with objects of similar ratios of utility to stopping
probability, and focus on one such bucket; this will only cost
a logarithmic factor in the approximation. In order to show
that similar ratios are indeed the right level of granularity, we
introduce a new stochastic process that replaces each high-
utility object with a larger stopping probability by a sequence
of smaller objects such that in expectation, the utility and
the stopping probabilities are comparable (Section 3.2). This
leads to a linear version of the MLP. Finally, we show that
the linear version is equivalent to a submodular function
with two matroid constraints and hence is approximable to
within a constant factor (Section 3.3).

3.1. Simplifying steps

We begin by considering the case when the stopping
probabilities are zero for all the objects.

Lemma 6. The MLP can be solved optimally if pu = 0 for
all u ∈ U .

Proof: Given that ∀u ∈ U, pu = 0, the expected
number of visits to each state is independent of the object
assignment. Thus, to obtain an optimal solution, it suffices
to sort objects in decreasing order of utility, and sort states
in decreasing order of expected number of visits, and match
accordingly (we call this algorithm SORT-AND-MATCH).

Next, we show that it suffices to consider only the objects
with positive stopping probabilities bounded away from 1 at
the expense of losing a constant factor in the approximation.

Lemma 7. Let γ ∈ (0, 1]. Suppose that instances of the MLP
in which ∀u ∈ U , pu ∈ (0, γ) can be approximated to within
a factor of α. Then, the general MLP can be approximated
to within a factor 1 + α+ 1/γ.

Proof: Let A be a given instance of the MLP. Let Z =
1 + α+ 1/γ.

Now, consider an optimal solution π∗ for A. The total
value of π∗ is the sum over the states xi of the Markov
chain of the utility of the object in xi, νπ(xi), times the
expected number of visits to xi. Removing an object from
an arbitrary state xi voids that state’s contribution to the
sum, but does not decrease the contribution of other states
to the sum. (In fact, leaving an empty state entails a stopping
probability 0 in that state, so that the expected number of
visits to each of the other states does not decrease.)

(1) Suppose the total utility of the states containing objects
with zero stopping probability is at least a = 1/Z of the total
utility of π∗. Then, if we take the instance A, remove all
the objects with positive stopping probability to obtain an
instance B′, and apply the SORT-AND-MATCH algorithm on
B′, we are guaranteed that the optimal solution to B′ is a
Z-approximation to the optimal solution to A.

(2) Suppose instead that the total utility of states contain-
ing objects with stopping probability at least γ is at least
b = 1/(γZ) of the total utility of π∗. Then, if we remove all
the objects with stopping probability at most γ from π∗ and
obtain an assignment π′′, then the total utility of π′′ is at least
1/(γZ) times the utility of π∗. On the other hand, since all
the objects in π′′ have continuing probability at most 1− γ,
in expectation, we will visit at most

∑∞
i=0 (1− γ)

i
= 1/γ

objects in a walk. The utility of π′′ is therefore at most 1/γ
times the maximum utility of an object in π′′. Therefore,
taking the object with stopping probability at most γ and
with the largest utility, and placing it in the source state s,
gives a 1/γ-approximation to the utility of π′′, and hence a
Z-approximation to the utility of π∗.

(3) Finally, suppose that at least c = α/Z of the total
utility π∗ is given by objects in A with stopping probability
in (0, γ). We then remove from A all the objects with
stopping probability not in (0, γ) to obtain an instance B.
An α-approximation to B will be a Z-approximation to A.

Since a+ b+ c = 1, at least one of the premises of three
cases holds, and the claim follows.

Let pmin be the minimum non-zero stopping probability
in the given instance. Since the stopping probabilities are
ratios of non-negative integers of O(log n) bits each, we
have pmin = minu∈U

pu>0
pu ≥ 1/nc, for some constant c.

Next, we show that once again by sacrificing a small
factor in approximation, we can assume that the maximum
ratio between two object utilities is 1/(εpmin), for every
sufficiently small constant ε.

Lemma 8. For any 0 < ε < 1, if instances of the MLP in
which ∀u ∈ U, pu ∈ (0, γ) and the ratio of the utilities of
two distinct objects are in

[
1, 1

εpmin

]
can be approximated

to within a factor α, then instances of the MLP where all
the stopping probabilities are in (0, γ), can be approximated
to within a factor (1 + ε)α.

Proof: Let u be the most valuable object, i.e., u =
argmaxu∈U νu in the given instance A. We claim that
removing from the instance all objects u′ 6= u such that
νu′ ≤ εpminνu still guarantees that the resulting instance B
has an optimal solution within a (1+ε) factor of the optimal
solution to A.

Indeed, since there is no object in A with zero stopping
probability, we have pmin = minu∈Upu > 0, and thus an
upper bound on the expected number of objects that can be
visited in the random walk is

∑∞
i=0(1− pmin)i = 1

pmin
.

Removing from the solution all the objects u′ such that
νu′ ≤ εpminνu to obtain B reduces the solution’s utility
by at most the expected number of all such objects we can
encounter in a random walk times their maximum utility, i.e.,
(1/pmin)εpminνu = ενu. Finally, observing that a solution
that places u in the starting state s has utility at least νu
yields the claim that a α-approximate solution to B is a
((1 ± ε)α)-approximate solution to A. Note that since the
smallest utility is positive, rescaling the utilities so that the
minimum is 1 does not change the approximation ratio of
the problem.

3.2. k̄-process and the linear MLP

We will now consider a generalization of our process. This
will be useful in the next reduction for grouping together ob-
jects with (very) different utilities and stopping probabilities.
The generalization shows that our process — in which, the
user visits a state, a utility is accrued, and then possibly
a stop event is triggered — can be well-approximated by
a continuous process where the user visits a state and an
arbitrarily long sequence of gains/possible-stops happens.
The generalization is parametrized by k̄ = (ku1

, ku2
, . . .)

where, ∀u ∈ U , ku is a positive integer.

Definition 9 (k̄-process). When the user sees the object u,
a process of ku rounds is started: at the beginning of each
round, a utility of νu/ku is gained. Then, a coin with head

probability 1− ku
√

1− pu is flipped independently of previous
flips. If heads comes up, then the user negatively stops the
process. Otherwise, the user moves on to the next round, or
the user positively stops the process if all ku rounds have
been played.

Clearly, our original Markov process is a 1̄-process: a
negative stop corresponds to a stopping event and a positive
stop corresponds to a new move according to the Markov
chain. We now compare the utilities accrued by the k̄-
processes and our original process, when the user sees an
arbitrary object u. Let µu(ku) be the expected utility accrued
when the user sees object u according to the k̄-process.

Lemma 10. For each ku ≥ 1, we have νu ≥ µu(ku) ≥
f(pu)νu, where f(p) = p(ln 1

1−p)−1 for p ∈ (0, 1) and
f(p) = 1−p for p = 0, 1. Furthermore, f(p) is a decreasing
function of p, for p ∈ [0, 1]. Also, the probability that the
user negatively stops the process while looking at u is pu
for each ku ≥ 1.

Proof: First of all, observe that the lower bound on
the expected utility of the k̄-process at state xi is trivial
if pu = 0, 1. In the former case, a gain of νu/ku will be
accrued at each of the ku steps spent in state xi, so the
utility will be νu with probability 1. In the latter case, the
lower bound equals 0, so the statement follows from the
observation that no utility can be negative. Therefore, we
assume pu ∈ (0, 1).

By definition, µu(1) = νu. Now, the expected utility of
object u in the k̄-process is

µu(ku) =
νu
ku

ku−1∑
j=0

(
ku
√

1− pu
)j

= νu
pu

ku
(
1− ku

√
1− pu

) .
We upper bound the latter denominator so to get a lower

bound for µu(ku). Recall that, for each x ∈ (0, 1), it
holds that (1 − x)α =

∑∞
n=0

(
α
n

)
(−x)n, where

(
α
n

)
is the

generalized binomial
(
α
n

)
= αn

n! . Therefore,

ku

(
1− ku

√
1− pu

)
= −ku

∞∑
j=1

(
(1/ku)

j

j!
(−pu)

j

)

= −ku
∞∑
j=1

(
1/ku (1/ku − 1)

j−1

j!
(−pu)

j

)

=

∞∑
j=1

(
(1− 1/ku)

j−1

j!
pju

)

≤
∞∑
j=1

(
(j − 1)!

j!
pju

)
=
∞∑
j=1

(
1

j
pju

)
= ln

1

1− pu
,

where the last step follows from the well-known identity
ln(1 − x) = −

∑∞
n=1

xn

n , which holds for x ∈ (−1, 1).
The upper bound on µu(ku) is trivial since the maximum
utility one can accrue during a visit of xi in the k̄-process
is ku · νu/ku. Next, observe that

f(x) =
x

ln 1
1−x

=
x∑∞

j=1

(
1
j x

j
) =

1

1 +
∑∞
j=1

(
1
j+1x

j
) .

Finally, since limx→0+ f(x) = 1 and limx→1− f(x) = 0,
and since f(x) ∈ (0, 1) for each x ∈ (0, 1), we conclude
that f(x) is decreasing in [0, 1].

Clearly, the probability that the user negatively stops the
process is pu. Indeed, the probability of a negative stop event
is 1−

(
ku
√

1− pu
)ku

= pu.
For each object u ∈ U with pu > 0, we associate the

integer ku = dpu/pmine. Given a path Ψ in the Markov
chain, Ψ = (x1, . . . , x|Ψ|), and an assignment of objects π to
the states of the Markov chain, we let Ψ+(i) = Ψ+

π (i) be the
object in the ith non-empty state in Ψ with the assignment
π, and Sπ(Ψ) be the number of non-empty states in Ψ. We
also let P = Pπ be the set of directed paths Ψ starting at
the source s, and ending in the sink t, that pass through at
least one non-empty state. Finally, let K = KΨ,π be the sum
of the ku’s of the objects u in path Ψ in the assignment π,
KΨ,π =

∑Sπ(Ψ)
j=1 kΨ+(j).

We now define a new problem and show that its solutions
can be used to approximate the original MLP.

Definition 11 (Linear MLP). Given an assignment π, we
define

VL(π) =
∑
Ψ∈P

min

(
KΨ,π,

⌈
1

pmin

⌉) |Ψ|−1∏
j=1

Mxj ,xj+1

 .

The linear MLP is to maximize VL(π) subject to the same
conditions as in the general MLP.

By the same conditions, we mean that no object can be
used more than once and each state can be assigned at most
one object. We now show that, under some assumptions, an
approximate solution to the linear MLP is an approximate
solution to the MLP.

Lemma 12. Suppose that an instance of the MLP is such
that all the stopping probabilities are in (0, 1/2) and all
the utilities are in [1, 1/(εpmin)]. Then there exists some
0 ≤ i <

⌈
log 1/(εp2

min)
⌉

= T , such that if we remove from
the instance all the objects u for which νu/pu 6∈

[
2i, 2i+1

)
,

then if an assignment of the remaining objects is a c-
approximation to the linear MLP, then it is also an O(cT)-
approximation to the original instance.

Proof: Let V (π) be the expected utility of the assign-
ment π on the given instance of the MLP. Then2,

V (π) =
∑
Ψ

|Ψ|−1∏
j=1

(
(1− pπ(xj−1))Mxj−1,xj

)
pπ(x|Ψ|−1)

|Ψ|−1∑
i=0

νπ(xi)

 .

2Recall that if t is the sink, then νπ(t) = 0, pπ(t) = 1.

We now partition the objects in U into buckets, where the
bucket Bi will contain all objects u ∈ U such that νu/pu ∈[
2i, 2i+1

)
with 0 ≤ i <

⌈
log 1

εp2
min

⌉
= T . Observe that

T = O(log n).
Consider an optimal solution V ∗ (achieved by π∗) to the

given instance of the MLP. We can rewrite its utility as
V ∗ = V (π∗) =

∑
x 6=t

(
νπ∗(x)E[# of times x is reached]

)
=
T−1∑
i=0

∑
x6=t

π∗(x)∈Bi

(
νπ∗(x)E[# of times x is reached]

)
.

Let i∗ be a (not necessarily unique) index of the outer sum
of the previous expression that maximizes the inner sum.
Observe that the inner sum for i = i∗ is the utility obtained
by considering only the utilities of the objects in bucket Bi∗ .
Suppose we remove all other objects. The expected number
of visits to a state, for each state, is not decreased (since an
empty state, i.e., a state with a gap, has stopping probability
zero). Thus, by our optimal choice of Bi∗ , we have that the
utility of the new solution is at least V ∗

T .
For each 0 ≤ i < T , we create the instance Di containing

the objects in Bi. We are guaranteed that at least for one
of the Di’s, its best solution will be a T -approximation to
the given instance. For the generic instance D = Di, whose
every object u is such that ρ = 2i ≤ νu/pu < 2i+1 = 2ρ,
we invoke Lemma 10.

Since pu ≤ 1/2 by our assumptions, Lemma 10 guarantees
that the value of any solution to the MLP is within a factor
of 1/f(1/2) = ln 4 of the value of the same solution to the
k̄-process problem. Therefore, if we c-approximate the k̄-
process MLP, then we obtain a (cT ln 4)-approximation to
our original MLP. We now show that the objective function
of the k̄-process MLP approximates VL(·), the objective
function of the linear MLP.

We start by analyzing the per-round stopping probability
p̄u of the k̄-process instance, for the generic object u.

p̄u = 1− ku
√

1− pu = 1− (1− pu)

⌈
pu
pmin

⌉−1

≥ 1− (1− pu)

(
pu
pmin

+1
)−1

≥ 1− (1− pu)
pmin
2pu

≥ 1− exp
(
−pmin

2

)
≥ pmin

2
− 1

2

(pmin

2

)2

≥ 7

16
pmin,

since pmin ≤ 1
2 . Furthermore,

p̄u = 1− (1− pu)

⌈
pu
pmin

⌉−1

≤ 1− (1− pu)
pmin
pu

≤ 1−
(

1

4

)pmin

≤ (2 ln 2)pmin,

where the middle inequality follows from (1−x)x
−1 ≥ 1/4,

for each x ∈ [0, 1/2]. On the other hand, the per-round gain
ν̄u can be bounded by
ρ

2
pmin ≤ νu

pmin

2pu
≤ νu

pmin

pu + pmin
≤ ν̄u ≤ νu

pmin

pu
≤ 2ρpmin.

Therefore, for each object u in instance D in the
k̄-process, u’s per-round stopping probability p̄u ∈
[(7/16)pmin, (2 ln 2)pmin] and u’s per-round gain ν̄u ∈
[(1/2)ρ, 2ρ].

Consider the following process, which is equivalent to our
k̄-process: the user chooses a path Ψ ∈ P according to its
probability given by the Markov chain, i.e., independent of
the objects’ placement. Then, each time the user gets to an
object u in the path, the user runs the k̄-process (i.e., for at
most ku rounds, a gain of ν̄u will be accrued at the beginning
of each round, and the stopping event at the end of a round
will happen with probability p̄u.) The user will follow the
path until it ends at t, independent of the stopping events.
Only, when a stopping event happens, the user will not get
the utilities of the remaining rounds in the path.

Let gπ(Ψ) be the expected utility of path Ψ, conditioned
on path Ψ to be followed by the user and let VD(π) be the
utility of the instance D with the k̄-process. Then,

VD(π) =
∑
Ψ∈P

gπ(Ψ)

|Ψ|−1∏
j=1

Mxj ,xj+1

 ,

gπ(Ψ) =

Sπ(Ψ)∑
i=1

νΨ+(i)

i−1∏
j=1

(
1− pΨ+(j)

)kΨ+(j)

kΨ+(i)−1∑
j=0

(
1− pΨ+(i)

)j .

Let K = KΨ,π =
∑Sπ(Ψ)
j=1 kΨ+(j). We will show an upper

and lower bound on gπ(Ψ) in terms of K.

Lemma 13. ρ (1−ln 2)2

2 min
(
K,
⌈

1
pmin

⌉)
≤ gπ(Ψ) and

gπ(Ψ) ≤ ρ 32
7 min

(
K,
⌈

1
pmin

⌉)
.

Proof: First,

gπ(Π) ≤
Sπ(Π)∑
i=1

2ρ
i−1∏
j=1

(
1− 7

16
pmin

)kΠ+(j)

kΠ+(i)−1∑
j=0

(
1− 7

16
pmin

)j
≤ 2ρ

K−1∑
i=0

(
1− 7

16
pmin

)i
= 2ρ

1−
(
1− 7

16pmin

)K
7
16pmin

≤ 32

7
ρ

min
(

7
16pminK, 1

)
pmin

≤ 32

7
ρmin

(
K,

⌈
1

pmin

⌉)
,

where the penultimate inequality follows from 1 − (1 −
7/16pmin)K ≤ 1 and (1− a)b ≥ 1− ab, for 0 < a < 1 ≤ b.
Next, observing that 1− (2 ln 2)pmin ≥ 0, since pmin ≤ 1/2

and ln 2 < 1,

gπ(Π) ≥
Sπ(Π)∑
i=1

1

2
ρ

i−1∏
j=1

(1− (2 ln 2)pmin)
kΠ+(j)

kΠ+(i)−1∑
j=0

(1− (2 ln 2)pmin)
j

≥ 1

2
ρ
K−1∑
i=0

(1− (2 ln 2)pmin)
i

≥ 1

2
ρ

min
(
K,
⌈

1
pmin

⌉)
−1∑

i=0

(1− (2 ln 2)pmin)
i

≥ 1

2
ρ

min
(
K,
⌈

1
pmin

⌉)
−1∑

i=0

(1− (2 ln 2)pmin)

⌈
1

pmin

⌉
−1

=
1

2
ρmin

(
K,

⌈
1

pmin

⌉)
(1− 2 ln 2pmin)

1
pmin

=
1

2
ρmin

(
K,

⌈
1

pmin

⌉)(
(1− 2 ln 2pmin)

1
2 ln 2pmin

)2 ln 2

≥ 1

2
ρmin

(
K,

⌈
1

pmin

⌉)(
(1− ln 2)

1
ln 2

)2 ln 2

=
(1− ln 2)2

2
ρmin

(
K,

⌈
1

pmin

⌉)
,

where the last inequality follows from (1 − x)x
−1

being a
decreasing function in x ∈ (0, 1], and x = (2 ln 2)pmin ≤
ln 2.

From Lemma 13, we obtain 7
32VD(π) ≤ ρVL(π) ≤

2
(1−ln 2)2VD(π). Therefore a c-approximate solution to

VL(π) is then a
(

64
7(1−ln 2)2 c

)
-approximate solution to

VD(π), which is then a
(

64 ln 4
7(1−ln 2)2Tc

)
-approximate solution

to the MLP.

3.3. A constant-factor approximation for the linear MLP
Next, we show that the linear MLP can be approximated

to within a constant factor in polynomial time.

Theorem 14. The linear MLP is approximable to within
factor 7

2 + ε in polynomial time.

Proof: To show that maxπ VL(π) can be approximated
in polynomial time, we prove that VL(π) is equivalent to a
submodular function with two matroids constraints (Lemma
15) and for a given assignment π, the utility of VL(π)
can be computed in polynomial time (Lemma 16). Given
these, we can use the submodular optimization algorithm
of Lee, Sviridenko, and Vondrák [14] under k = 2 matroid
constraints to yield an approximation of k+1+ 1

k+ε = 7
2 +ε.

Lemma 15. VL(π) is equivalent to a submodular function
with two matroid constraints.

Proof: To prove submodularity, we first need to be more
specific regarding the solution space of the VL(π) problem.
First of all, to each object u in the instance we associate an
integer ku as before. Then, we consider the universe U ×
S, where S is the set of states of the Markov chain. A
solution to the problem is a subset of U × S. Note that
in general such a solution may not be feasible for VL(π)
since an object might be used in more than one state or
a state might be assigned more than one object. To ensure
feasibility for VL(π), we add two matroid constraints: (i)
the object matroid independent sets that contain, for each
object u, at most one pair containing the object u and (ii)
the state matroid independent sets that contain, for each state
x, at most one pair containing the state x. These constraints
ensure that an object is used at most once and a slot is filled
at most once.

Observe that the intersection I = Io ∩ Is of an inde-
pendent set Io of the object matroid and an independent
set Is of the state matroid can be easily transformed into
a feasible solution π = π(I) for VL(π) in polynomial
time. Conversely, each feasible solution of VL(π) can be
transformed in polynomial time into an independent set of
the object and the state matroids. Indeed, the intersection is
such that each state contains at most one object and each
object is contained in at most one state, which is exactly the
definition of feasible solution of VL(π).

For a path Ψ = (x1, . . . , x|Ψ|) ∈ P and A ⊆ U × S, let
K ′Ψ,A =

∑|Ψ|
i=1

∑
(u,xi)∈A ku. Observe that, if A satisfies

both matroid constraints and π = π(A) is the assignment
induced by A, then K ′Ψ,A = KΨ,π(A), i.e., K ′ = K when
A is a valid assignment for the linear MLP. The objective
VS(A) with A ⊆ U × S is

VS(A) =
∑
Ψ∈P

min

(
K ′Ψ,A,

⌈
1

pmin

⌉) |Ψ|−1∏
j=1

Mxj ,xj+1

Note that VS(A) = VL(π(A)) for each A satisfying the two

matroid constraints.
We now prove that VS(A) is a submodular

function; observe that VS(A) is a weighted sum
of terms TΨ(A) = min

(
K ′Ψ,A, d1/pmine

)
=

min
(∑|Ψ|

i=1

∑
(u,xi)∈A ku, d1/pmine

)
, one for each

path Ψ. We show that each of the terms is submodular, thus
showing the submodularity of VS(A). Given two arbitrary
sets A,B ⊆ U × S, the following holds.

(i) If K ′Ψ,A > d1/pmine, then K ′Ψ,A∪B > d1/pmine, and
TΨ(A∪B) = TΨ(A). Also, in general, TΨ(A∩B) ≤ TΨ(B).
Thus, TΨ(A∪B) +TΨ(A∩B) ≤ TΨ(A) +TΨ(B), and the
function is submodular.

(ii) If K ′Ψ,B > d1/pmine, a similar reasoning applies.
(iii) Otherwise we have K ′Ψ,A,K

′
Ψ,B ≤ d1/pmine and

in this case, TΨ(A) = K ′Ψ,A, TΨ(B) = K ′Ψ,B and
TΨ(A ∩ B) = K ′Ψ,A∩B . In general, TΨ(A ∪ B) ≤
K ′Ψ,A∪B = K ′Ψ,A + K ′Ψ,B − K ′Ψ,A∩B . Thus, in our case,

TΨ(A ∪B) ≤ TΨ(A) + TΨ(B)− TΨ(A ∩B); the function
is then submodular.

Lemma 16. VL(π) can be computed in polynomial time.

Proof: Let SA be the set of states of the Markov
chain that appear in at least one pair in A. We call these
states non-empty. Given a non-empty state y ∈ SA and an
arbitrary state x in the Markov chain, let qx,y(A) be the
probability that a random walk starting in x hits y before
hitting any other non-empty state. For each non-empty state
x and arbitrary state y, qx,y(A) can be obtained by well-
known techniques in polynomial time. Start by copying the
state x, and its out-links with their probabilities3, obtaining
a new state x′, which will be empty (even if x was not
so). Then, remove each outgoing edge from each non-empty
state, and add to each non-empty state a self-loop having
probability 1. Finally, compute the probability of ending up
in the recurrent set {y} if starting from x′. This can be
done with classical techniques in polynomial time, i.e., by
inverting the fundamental matrix of the new Markov chain.

Observe that the expression for VS(A) sums, for each
path in P , its probability times the minimum of the sum of
the ku’s of the objects u it hits and d1/pmine. If we group
paths in P according to the sum of their ku’s (either K ′ =
1, . . . , d1/pmine−1, or K ′ ≥ d1/pmine) then we can obtain
VS(A) by summing, for each k ∈ {1, . . . , d1/pmine − 1},
the product of k times the probability of following some
path in the kth group (i.e., our expected utility from paths
whose objects’ ku’s sum up to k), and, finally, by adding
the product of d1/pmine times the probability of following
a path whose objects ku’s sum up to at least d1/pmine. The
probabilities in our sum can be obtained using the qx,y(π)’s.
If Sk(A) is the set of sequences σ having the initial state
as first element, followed by non-empty states, σ ∈ {s} ×⋃d1/pmine
i=0 (SA)

i, such that
∑|σ|
i=1

∑
(u,σ(i))∈A ku = k, then

the probability of following some path in the kth group,
1 ≤ k < d1/pmine, is given by

Pk(A) =
∑

σ∈Sk(A)

|σ|−1∏
i=1

qσ(i),σ(i+1)

(
1−

∑
x∈SA

qσ(|σ|),x

)
and

P≥d1/pmine(A) =
∑

σ∈Sk(A)

|σ|−1∏
i=1

qσ(i),σ(i+1),

which is the probability of following some path in the last
group. Observe how the Pk(A)’s, and P≥d1/pmine(A) can
be easily computed via dynamic programming. We can then
express VL(π) as

VL(π) =

d1/pmine−1∑
k=1

(kPk(A)) +

⌈
1

pmin

⌉
P≥d1/pmine(A).

Given the expressions, it is clear that VL(π) can be
computed in polynomial time.

3Making sure that if x had a self-loop, that would be copied into a
transition going from x′ to x.

Finally, combining Lemma 7, Lemma 8, Lemma 12, and
Theorem 14 we obtain the main result.

Theorem 17. The MLP can be approximated to within a
factor O(log n).

By slightly modifying Lemma 12, we can also prove the
following result:

Corollary 18. If, in the input instance of the MLP, there are
objects u1, . . . , ut such that for every object u, (νu/pu) is
within a constant fraction of (νui/pui) for some i, then the
MLP can be approximated to within a factor O (t).

Thus, if the MLP is inapproximable to better than
Ω(log n), then it is so only for instances that have
t = Ω(log n) objects u1, . . . , ut such that νu1

/pu1
≥

cνu2/pu2 ≥ · · · ≥ ct−1νut/put , for some constant c > 1.

4. A GAP-FREE O(log3/2 n)-APPROXIMATION FOR
ACYCLIC GRIDS

The algorithm for the MLP described in Section 3 can
produce assignments with gaps, i.e., there can be states in
the Markov chain to which no object is assigned. In this
section, we consider the gap-free MLP for grid graphs and
obtain an O(log3/2 n)-approximation; note that Theorem 17
implies an O(log n)-approximation but with gaps. As we
discussed earlier, grid graphs arise when objects (say image
search results) are to be laid out in a grid.

Definition 19 (Grid graph). The grid graph of order n is a
(2n+1)× (2n+1) grid, with nodes si,j , for −n ≤ i, j ≤ n
— node s0,0 being the source node. Each node assigns the
same probability to each of its out-neighbors. Node si,j has
edges to node (i) si+1,j if 0 ≤ i < n, or to the sink t if
i = n; (ii) si−1,j if 0 ≥ i > −n, or to the sink t if i = −n;
(iii) si,j+1 if 0 ≤ j < n, or to the sink t if j = n; and (iv)
si,j−1 if 0 ≥ j > −n, or to the sink t if j = −n.

Theorem 20. The gap-free MLP is approximable to within
a factor O(log3/2 n) on any grid graph of order n.

Proof: The main idea is as follows. It suffices to work
on any one of the four quadrants of the grid and observe that
if the walk actually ends up in this quadrant, it is likely to
remain within a cone around the bisector of that quadrant,
since, at each round, the probability of going a step away
from the diagonal is equal to the probability of going a step
closer to it. Thus, we can lower bound our utility by what we
would obtain by filling the cone with objects having roughly
the same stopping probability. To upper bound the value of
the optimal solution, we observe that the walk, regardless of
how objects are placed, is nearly uniformly mixed inside a
slightly smaller cone. Since the ratio between the size of the
cones is only polylogarithmic, we obtain our approximation
ratio.

For simplicity of exposition, we first prove a weaker
approximation bound of O(log5/2 n). As in the proof of

Theorem 17, we bucket objects according to their utili-
ties and stopping probabilities. Bucket Bi,j , 0 ≤ i, j ≤
O(log n), contains objects u with pu ∈ (2i, 2i+1] and
νu ∈ (2−j−1, 2−j]. Using the same argument as in the proof
of Theorem 17, we can ignore objects with utility smaller
than n times the maximum object utility, and we can increase
the smallest stopping probability to 1/n, in such a way that
we end up with O(log2 n) buckets.

Consider any optimal solution and let its utility be V ∗.
Choose the quadrant on the grid whose states have the max-
imum total expected utility. Let Bi∗,j∗ be the bucket whose
objects have maximum total expected utility in the chosen
quadrant. Remove the objects not in Bi∗,j∗ from the chosen
quadrant and remove all the objects from other quadrants,
obtaining an assignment π. Then, the total expected utility
of π will be at least Ω(V ∗/ log2 n).

Let Si, i ≥ 0, be the set of states at distance i from
the origin in the chosen quadrant. Then, |Si| = i + 1 for
0 ≤ i ≤ n/2. Let ki be the number of objects that are
placed in Si by π. Let k =

∑
i ki.

We claim that the probability of getting to any fixed node
in Si is at most O(1/

√
i). To see this, sort the nodes in Si

starting from one end of the quadrant, going to the other.
Suppose i ≤ n/2. For getting to the jth node in the ordering
of line i in the chosen quadrant, it is necessary to get the first
horizontal (left or right) and the first “vertical” (up or down)
choices correct. Let us condition on this event (this does not
decrease the probability of getting to j). Then, we have to
make, say, i − j horizontal choices and j vertical choices.
Since each choice is horizontal with probability 1/2, the
probability of getting to j is the probability of getting exactly
j heads in i tosses of a fair coin, i.e.,

(
i
j

)
2−i < O(1/

√
i).

Thus the claim is proved for i ≤ n/2. Observe that if i >
n/2, then the probability of getting to the jth node in the
ordering is easily seen to be less than O(1/

√
i) (observe

that the sink t becomes reachable for such a large i).
Now, fix any set Si of states. Since the maximum proba-

bility of getting to any fixed node in Si is at most O(1/
√
i),

the probability of actually hitting some object in Si is upper
bounded by min(1, O(ki/

√
i)). We will show the following

upper bound on the expected number of objects that will be
hit:

O

(
n∑
i=1

(
min(

√
i, ki)√
i

))
≤ O

(√
k
)
.

Indeed, the ith term of the sum is maximized when
min

(√
i, ki

)
is maximized, i.e., when ki =

√
i. Further-

more, the smaller the i, the larger is the factor i−1/2

for which the min(·) term is multiplied. We can place at
most k objects in the grid. Thus, choosing ki =

√
i for

i = 0, 1, . . . ,Θ(
√
k) (since filling Θ(

√
k) levels requires

Θ(k) objects) maximizes the expected number of objects
that will be hit, and gives the claimed upper bound.

We now give a different upper bound on the expected

number of objects that will be hit. We will use the smallest
of the two in the following. Since we are considering objects
in Bi∗,j∗ , their stopping probability is at least 2−j

∗−1.
Thus, in expectation, we will hit at most O

(
2j
∗)

of them.
Then, the maximum expected utility of the quadrant, given
π, is O

(
2i
∗
min

(
2j
∗
,
√
k
))

. By the choice of Bi∗,j∗ the
expected utility of the optimal assignment can be upper
bounded by O((log2 n)2i

∗
min

(
2j
∗
,
√
k
)

.
We now show how to fill the quadrant with objects

from Bi∗,j∗ in such a way that the expected utility is
Ω
(

2i
∗
min

(
2j
∗
,
√
k/ log k

))
. Furthermore, if the empty

states in the chosen quadrant and in the other quadrants
are filled arbitrarily with the remaining objects, then the
expected utility is reduced only by a constant. This leads to
an O(log5/2 n) approximate solution to the gap-free MLP
on grids.

First, guess the best bucket (since there are O(log2 n)
buckets, we can just enumerate all of them). For each i ≥ 0,
as long as there are available objects, place

√
i log k objects

in the states of Si, uniformly around the origin (i.e, fill
with objects from Bi∗,j∗ the

√
i log k/2 states just at the

left of the origin, and do the same for the
√
i log k/2 states

just at the right of the origin.) The process will go on for
Θ(
√
k/ log k) levels Si, i = 1, . . . ,Θ(

√
k/ log k), since

Θ(
√
k log k ·

√
k/ log k) = Θ(k).

By the Chernoff bound, the probability of hitting some
state in the first Θ(

√
k/ log k) levels that is not filled with

objects from Bi∗,j∗ is O(k−2), if the walk enters the right
quadrant. The probability of entering the right quadrant is
1/4 − o(1). Thus, with probability 1/4 − O(k−2), we do
not hit any state in the first Θ(

√
k/ log k) levels that is not

filled with objects from Bi∗,j∗ .
If this does not happen, then the probability of stop-

ping because of some object stopping event, before
having seen Ω

(
min

(
2j
∗
,
√
k/ log k

))
objects is less

than an (arbitrarily small) constant. Thus, we will ob-
tain a utility of Ω

(
2i
∗
min

(
2j
∗
,
√
k/ log k

))
with con-

stant probability, and the expected utility will thus be
Ω
(

2i
∗
min

(
2j
∗
,
√
k/ log k

))
. Observe that we can fill the

states that are still empty with any objects without decreasing
the lower bound we just obtained on the utility of our
solution.

We can improve the approximation bound to O(log3/2 n).
To do so, one needs to bucket only according to the object
probabilities, and then show that it is always better to put
objects with higher utilities in lower levels. We omit the
details of this improvement from this version.

5. HARDNESS RESULTS

In this section we show hardness results for the MLP
and the gap-free MLP in fairly restrictive settings; the latter
result shines a spotlight on how algorithmically hard it is to

require each state to be filled. We begin by showing that the
MLP is APX-hard.

Theorem 21. The MLP is APX-hard even if the stopping
probabilities and the utilities are in {0, 1}.

Note that from Corollary 18, instances of the MLP satisfy-
ing property of the previous reduction (and, more generally,
instances in which the number of different types of objects
is constant), can be solved approximately with ratio O(1)
in polynomial time. The corresponding restricted MLP is
therefore APX-complete.

Next, we show that the gap-free MLP is hard to approx-
imate when the underlying graph is a DAG with just one
self-loop and the stopping probabilities are binary.

Theorem 22. It is NP-hard to approximate the gap-free
MLP to within 2n

1−ε
, for each ε > 0, even if (i) the graph

is a DAG with a single self-loop and (ii) ∀u, νu = 1 and
pu ∈ {0, 1}.

In the reduction, the transitions are uniform over the out-
neighbors for all but one state. It is possible to eliminate
this exception by increasing the number of cycles. It is even
possible to let all states have zero stopping probability. Also,
observe that in terms of bit-complexity b (i.e., the number
of bits needed to represent the instance, i.e., O(log n) bits
per edge, plus the bits needed to represent the various
probabilities), Theorem 22’s instances have b = n1+O(ε).
Therefore, the proof of Theorem 22 also guarantees an
inapproximability bound of 2b

1−ε
. By Theorem 4, this factor

is nearly tight.

6. IMPROVED APPROXIMATIONS FOR DIRECTED ROOTED
TREES

In this section we consider directed trees and obtain
two improvements: (i) a gap-free O(log n)-approximation
algorithm and (ii) a gap-free quasi-polynomial time approx-
imation scheme. Note that rooted trees are similar to the
F -like eye-tracks on a page reported by [2] and to the
placement of advertisements in tree-like websites. Therefore,
they are interesting objects to study in their own right. First,
we show that both the general MLP and the gap-free MLP
on the directed tree can be approximated to within factor
O(log n).

Theorem 23. The gap-free MLP is approximable to within
a factor O(log n) on any directed tree of size n.

Next, we obtain a gap-free (1 + ε)-approximation algo-
rithm for the MLP on directed rooted trees. This algorithm,
however, runs in time quasi-polynomial in the tree size. This
algorithm is similar in spirit to the Kempe–Mahdian’s quasi-
PTAS for lines [13]. Since lines are trees, this algorithm can
be seen as a generalization of the quasi-PTAS of [13].

Theorem 24. For any ε > 0, the gap-free MLP can be ap-
proximated to within a factor (1+ ε) on any rooted directed
tree of size n. The algorithm runs in time nO(log2 n)|U |.

We also note that the same dynamic programming ap-
proach can be used to obtain a quasi-polynomial time
algorithm for bounded-treewidth graphs. We omit the details
in this version.

ACKNOWLEDGMENTS

Flavio Chierichetti thanks Michael Mitzenmacher for
many fruitful discussions on the linear model of [1].

REFERENCES

[1] G. Aggarwal, J. Feldman, S. Muthukrishnan, and M. Pál,
“Sponsored search auctions with Markovian users,” in Proc.
4th WINE, 2008, pp. 621–628.

[2] A. Aula and K. Rodden, “Eye-tracking studies: More than
meets the eye,” 2009, http://googleblog.blogspot.com/2009/
02/eye-tracking-studies-more-than-meets.html.

[3] P. Berman and M. Karpinski, “On some tighter inapproxima-
bility results (extended abstract),” in Proc. 26th ICALP, 1999,
pp. 200–209.

[4] M. Charikar, R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins, “On targeting Markov segments,” in Proc. 31st
STOC, 1999, pp. 99–108.

[5] F. Chierichetti, R. Kumar, and P. Raghavan, “Optimizing two-
dimensional search results presentation,” in Proc. 4th WSDM,
2011, pp. 257–266.

[6] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey, “An
experimental comparison of click position-bias models,” in
Proc. 1st WSDM, 2008, pp. 87–94.

[7] X. Deng and J. Yu, “A new ranking scheme of the GSP
mechanism with Markovian users,” in Proc. 5th WINE 2009,
2009, pp. 583–590.

[8] A. Duchowski, “A breadth-first survey of eye tracking ap-
plications,” Behavior Research Methods, Instruments, and
Computers, vol. 34, no. 4, 2002.

[9] U. Feige, M. Karpinski, and M. Langberg, “A note on
approximating max-bisection on regular graphs,” Information
Processing Letters, vol. 79, no. 4, pp. 181 – 188, 2001.

[10] I. Giotis and A. Karlin, “On the equilibria and efficiency of
the GSP mechanism in keyword auctions with externalities,”
in Proc. 4th WINE, 2008, pp. 629–638.

[11] R. Gomes, N. Immorlica, and E. Markakis, “Externalities in
keyword auctions: An empirical and theoretical assessment,”
in Proc. 5th WINE, 2009, pp. 172–183.

[12] G. Gutin and A. Yeo, “Note on maximal bisection above tight
lower bound,” IPL, vol. 110, no. 21, pp. 966 – 969, 2010.

[13] D. Kempe and M. Mahdian, “A cascade model for exter-
nalities in sponsored search,” in Proc. 4th WINE, 2008, pp.
585–596.

[14] J. Lee, M. Sviridenko, and J. Vondrák, “Submodular max-
imization over multiple matroids via generalized exchange
properties,” in Proc. 12th APPROX, 2009, pp. 244–257.

[15] A. Moffat and J. Zobel, “Rank-biased precision for measure-
ment of retrieval effectiveness,” TOIS, vol. 27, no. 1, 2008.

[16] S. Outing and L. Ruel, “The best of eyetrack III: What we saw
when we looked through their eyes,” http://www.poynterextra.
org/eyetrack2004/main.htm.

